Accuracy of side-chain prediction upon near-native protein backbones generated by Ab initio folding methods.
نویسندگان
چکیده
The ab initio folding problem can be divided into two sequential tasks of approximately equal computational complexity: the generation of native-like backbone folds and the positioning of side chains upon these backbones. The prediction of side-chain conformation in this context is challenging, because at best only the near-native global fold of the protein is known. To test the effect of displacements in the protein backbones on side-chain prediction for folds generated ab initio, sets of near-native backbones (< or = 4 A C alpha RMS error) for four small proteins were generated by two methods. The steric environment surrounding each residue was probed by placing the side chains in the native conformation on each of these decoys, followed by torsion-space optimization to remove steric clashes on a rigid backbone. We observe that on average 40% of the chi1 angles were displaced by 40 degrees or more, effectively setting the limits in accuracy for side-chain modeling under these conditions. Three different algorithms were subsequently used for prediction of side-chain conformation. The average prediction accuracy for the three methods was remarkably similar: 49% to 51% of the chi1 angles were predicted correctly overall (33% to 36% of the chi1+2 angles). Interestingly, when the inter-side-chain interactions were disregarded, the mean accuracy increased. A consensus approach is described, in which side-chain conformations are defined based on the most frequently predicted chi angles for a given method upon each set of near-native backbones. We find that consensus modeling, which de facto includes backbone flexibility, improves side-chain prediction: chi1 accuracy improved to 51-54% (36-42% of chi1+2). Implications of a consensus method for ab initio protein structure prediction are discussed.
منابع مشابه
Constructing side chains on near-native main chains for ab initio protein structure prediction.
Is there value in constructing side chains while searching protein conformational space during an ab initio simulation? If so, what is the most computationally efficient method for constructing these side chains? To answer these questions, four published approaches were used to construct side chain conformations on a range of near-native main chains generated by ab initio protein structure pred...
متن کاملLEAP: Highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains
Prediction of protein loop conformations without any prior knowledge (ab initio prediction) is an unsolved problem. Its solution will significantly impact protein homology and template-based modeling as well as ab initio protein-structure prediction. Here, we developed a coarse-grained, optimized scoring function for initial sampling and ranking of loop decoys. The resulting decoys are then fur...
متن کاملTOUCHSTONE II: a new approach to ab initio protein structure prediction.
We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structu...
متن کاملQuantitative first principles calculations of protein circular dichroism in the near-ultraviolet
Vibrational structure in the near-UV circular dichroism (CD) spectra of proteins is an important source of information on protein conformation and can be exploited to study structure and folding. A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper interpretation of and insight into biophysical and simulation studies of pr...
متن کاملFold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
The feasibility of predicting the global fold of small proteins by incorporating predicted secondary and tertiary restraints into ab initio folding simulations has been demonstrated on a test set comprised of 20 non-homologous proteins, of which one was a blind prediction of target 42 in the recent CASP2 contest. These proteins contain from 37 to 100 residues and represent all secondary structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 33 2 شماره
صفحات -
تاریخ انتشار 1998